Network Theory and Analysis

Course Code	19EC3301	Year	II	Semester	Ι
Course	Program	Branch	Course Type		Theory
Category	Core		ECE		
Credits		L-T-P		Prerequisites	19ES1101 (Basic
	3		3-0-0		Electrical and
	5		5-0-0		Electronics
					Engineering)
Continuous		Semester End		Total Marks	
Internal			70		100
Evaluation					

Course Outcomes					
Upon	Upon successful completion of the course, the student will be able to				
CO1	Estimate the steady state response of RC, RL and RLC circuits for sinusoidal excitation				
CO2	Analyse various circuits in the time and transform domains using transient analysis				
	methods				
CO3	Analyse various networks by applying transformation techniques, mesh analysis,				
	nodal analysis and network theorems				
CO4	Evaluate the bandwidth and quality factor of series and parallel resonant circuits				
CO5	Determine the characteristics of different two port networks				

Contribution of Course Outcomes towards achievement of Program Outcomes & Strength of correlations (3-High, 2: Medium, 1:Low)

Buchgu		ciatioi	15 (5-11	.1gn, 2.	muun	,								
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	2			1	1	1		1	2	1
CO2	3	3	2	2	2			1	1	1		1	2	1
CO3	3	3	2	2	2			1	1	1		1	2	1
CO4	3	3	2	2	2			1	1	1		1	2	1
CO5	3	3	2	2	2			1	1	1		1	2	1

	Syllabus	
Unit No.	Contents	Mapped CO
Ι	Sinusoidal Steady-State Analysis: Sinusoids, sinusoidal functions and complex functions, instantaneous power, average power, effective values of current and voltage, apparent power and power factor, complex power, phasors, phasor relationships for R, L and C and steady state analysis of RL, RC and RLC circuits.	CO1
Π	Analysis of circuits: Transient analysis of first order and second order systems, initial and final conditions in networks, dc transients: source free and forced response of RL, RC and RLC circuit analysis using Laplace transform.	CO2
III	Network Theorems (Application to AC circuits): Ohms law, Kirchoff's laws, series and parallel circuits, source transformations, delta-wye conversion, linearity and superposition theorem with simple examples, Thevenin's and Norton's theorem with simple examples, maximum power transfer theorem, mesh, super mesh analysis, nodal, super node analysis.	CO3

IV	Resonance: Series resonance, parallel resonance, bandwidth, selectivity, quality factor.	CO4
V	Two Port Networks: Impedance parameters, admittance parameters, hybrid parameters and transmission parameters, relationships between parameters.	CO5

Learning Resources					
Text Books					
1. M.E.VanValkenburg, Network Analysis, III Edition, Pearson Education					
2. ASudhakar and ShyammohanSPalli, Circuits and Networks, 5 th Edition, McGraw Hill					
Reference Books					
1.William H Hayt, Jack E Kimmerly and Steven M.Durbin, Engineering Circuit Analysis, Tata					
McGraw Hill					
2.Ravish R Singh, Network Analysis and Synthesis, Tata McGraw Hill Education (India)					
Pvt.Ltd, New Delhi					
e- Resources & other digital material					
1 https://www.youtube.com/playlist?list=PLC7D3EAFEA0CC0420&app=desktop					

1.<u>https://www.youtube.com/playlist?list=PLC7D3EAEFA0CC0420&app=desktop</u> 2.<u>https://www.tutorialspoint.com/network_theory/network_theory_quick_guide.htm</u>

3.https://nptel.ac.in/courses/108/105/108105159/